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JIMMARY

Park managers areften requiredto simultaneously conserve wildlife and promote recreation.

However recreationmaydisplace wildlifechallenginghis duatmandate Thischallenge might be
overcomeby estimatinga threshold limitof recreationistsat whichwildlife exhibit displacement
thereforeinforming andjustifying trail-uselimits. Unfortunately, theseestimates are difficult to obtain

as they require data regarding both recreational traffic and wildlife habitat use. Further, once such data
has been acquiredinalyticalmethods foridentifying thresholdsvary widely In this report,l highlight

the utility of camera trafs to obtain data regarding both recreational traffic and wildlife habitat use, and
explorehow this datamightbe used tadentify thresholds ofrecreationaldisturbance.

| beginwith abrief summary of current literature regarding recreation &gy, underscoring a paucity
of these studiedeingtranslatedto policy.Following this) highlight howcamera trag may be useful in
this field, being able toollectlongterm data on both recreation and wildliféthen provide an
overview ofhow camera trapdata is often structuredMoving on, highlightfour methods ofidentifying
a threshold of disturbanceith this data, begimingwith the easyto-implement butlessinformative
methods and subsequently mamginto more difficult, but statistically rigorous methods.

Specificallyl showhow data visualization andimpleanalysesnay be usedo investigate the existence

of recreational disturbangebut maynot provide concrete estimates dfiresholds. | then uselinear

regressiorto identify a potential thresholdemphasizinghe capacityfor this methodto control for

other sources of environmental variatianfluencingwildlife distributiong 6 dzi ad NBaaAy3a KA :
lack of consideration for nonlinear relatidmps. Following this] usegeneralized additive modets
investigatenonlinearrelationships but show how sparse data (which are commowildlife researcl)

may lead to issues in model fittinginally] showcase the utility of random forest algorithms in dealing

with sparse dataemphasimgthat thresholds estimatedthis way may be conservatiualess

supplemented with an adequate amount of data regarding alternative drivers of wildlife distributions

| proposethat simpler methods of estimating recreational thresholds may not be statistically rigorous
enough to justify trail limits, but more complex methadwshen supplemented with enough data
regarding alternative drivers of habitat usenay providea thoroughevidencebased mode of
establishing trail limitsl. encourage park managers to carefully consider methods ereglmydiscern
thresholds of recreational disturbance, and to harnessre advancedtatistical modelsvhen

appropriate In conclusion | accentuate the usefulness of an ecosystetde monitoring approach

paired with random forest algorithm® discern precise estimates of thresholds, which would bolster
rationale in making decisions regarding park management

Throughout the tek | provideexamplesof eachanalytical approachtilizing bobcatsl{ynx rufuyas a
study organism in the context of Golden Ears Provincial PatishBColumbia.
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|.INTRODUCTION

Increasinglyresearchers worldwide are uncovering the varidegeteriousimpactsnon-consumptive

recreation may have on wildlife (Larson et al. 20¥8ith recentdramatic increases in recreatioBC

Ministry of Environment 201§ andthe projected growthof this activity in the future (White et al.

2016), understanéhg how recreationaffectswildlife is crucial to biodiversity conservatiomhis is
especiallypertinentin protected areas, which are oftenanaged under a duahandate to

simultaneously provide recreational opportunities while conserving biodiversity (Sarmento & Berger

2007; Thomas & Reed 2019he need to balance these seemingly disparate goaldées pvotal to

0KS SadlrofAaKYSyd 2F GKS FTASER 2F aNBONBFiAzy SO02

Recreatiorecologystudies oftenseek tounderstand wildlife spatiotemporal displacementrégsponse
to recreation Lesmerises et al. 20L,8ut may als@xplorephysiological responses (&itaz et al.
2007),changes imeproductive success (Finney et al. 2005kltered behaviour (Geoffroy et al. 2015),
especially in response to fastpaced recreation (Naidoo & Burton 202Bjowever, the repercussions
of such research are uncleaxs fav of studies attempt to translate results into tangible policy
recommendations for park managers

Translating science into policy is a common barrier that prevents progress from being made in many
fields (Thompson et al. 2091In recreation ecology, thisbstacle is heightened whaesearcherdail to
utilize continuousmeasuref recreation extentwhich could then be used to identifigresholds at

which recreation begins to disturb wildli{f®ertien et al. 2021)Such continuous measures of
recreational activity can be acquired through the deployment and maintenanceroéra tras, which
cansimultaneouslymonitor recreation andwildlife (Naidoo & Burton 2020)

Here,l explain the structure ofameratrap data, and howthis datamight be usedo identify

thresholds Then, explorefour analyticalmethods for thresholddentification, beginningwith the most
basic, but leasstatistically sounanethods, and mowg into more complicated, but statistidglrigorous
methods for assessirtresholds.To assist with illustratinthesemethods,| use camera trap data from
Golden Ears Provincial Pakitish Columbiato evaluaterecreational thresholds at which the
disturbance of bobcatd {nx rufuybecomes evidentThis speciesvas choseras it has been noted in
prior literature to respond negatively to recreational pressui@gg@rge & Crooks 200Reed &
Merenlender 2008), and preliminary analysesto$ dataset (Procko& Burton, unpublisheddata) have
indicatedbobcatsin this study areanay also be negatively impacted by hikers



Il. CAMERA TRATA

Camera trap (CTs) are a nanvasive and coseffective method of wildlife monitoring (Burton et al.
2015), and the data from CTs can be used f@ae multitude relationships between wildlife and
various forms of anthropogenic disturbanaed.habitat modification in Tattersall et al. 2020, human
voices in Suraci et al. 2017, or recreatiolNaidoo & Burton 2020CTs come in many shapes an@sjz
with technical features varying widely, but most modern CTs operate on an infrared sensor system,
taking photos of the area directly in front of them after sensing a temperaturieh differs from that of
the ambient environmente.g. warmblooded aninals).

Accordinglywhen triggeredthe data acquired through Cissrelatively consistent. Coffer a precise
moment in timein which to view a specific location through a window (thgible zone directly in front

of the camera leng)whileadditional data (e.g. temperature, lunar phase) specific to that moment may
also be recordedSwann et al2011) However no CTen the market todayare capable of identifying
species in realime, so once SD casdre collected froma CT, the images omé SD card will need to be
uploaded to a computer famageidentification.Formy purposes) will not elaborate on this process.
However, resourcedor this, and other CT data management processey be found at
https://wildcams.ca/library/

Once the photos from a camera have been identif@tg row ofthe data(representing a single photo)
mightlook like this

Location

Date/Time

Species

Temperature

Lunar Phase

CAMO1

2021-01-01 12:00:00

Lynx rufus

Mng/

Full Moon

Although since CTs are continuously operating technologies, and can be triggered multiple times by the

same individual, the dattor an individual detection everdften contains multiple rows

Location Date/Time Species Temperature | Lunar Phase
CAMO1 2021-01-01 12:00:00| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:01| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:02| Lynx rufus Mg/ Full Moon

Eventually, thdirst captured imagevill need to be filteredapart fromsubsequent images becauke
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remain focused on building up thikitasetto resemble a more realistic CT datasatd revsit this topic

of filtering out multiple images of the same individual latédding the complexity of lorterm
continuous monitoring, the data begins to look litkes:

Location Date/Time Species Temperature | Lunar Phase
CAMO1 2021-01-0112:00:00 | Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:01| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:02| Lynx rufus Mg/ Full Moon



https://wildcams.ca/library/

CAMO1

2021-01-15 16:30:15

Lynx rufus

Mn e/

Last Quarter

CAMO1

2021-01-15 16:30:16

Lynx rufus

Mn g/

LastQuarter

Where theadditionalimages were taken two weeks after the first three images.

Then,with the potential for multiple specie®r peopleto be detected at a single location, the data
mightrealistically look more like:

Location Date/Time Species Temperature | Lunar Phase
CAMO1 2021-01-01 12:00:00| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:01| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:02| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-11 13:00:00| Homo sapiens MH 6 / LastQuarter
CAMO1 2021-01-11 13:00:01| Homo sapiens MH 6 / Last Quarter
CAMO1 2021-01-11 13:00:02| Homo sapiens MH G / Last Quarter
CAMO1 2021-01-15 16:30:15| Lynx rufus Mne / Last Quarter
CAMO1 2021-01-15 16:30:16| Lynx rufus Mn e / Last Quarter

This is, however, justow thedatamay appeafor one cameraMost projectsrequire more than one

camerasoadatasets A 0 K 2F (0 Sy KI @S YdzZ GALX S

result in a datasetesembing this:
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Location Date/Time Species Temperature | Lunar Phase
CAMO1 2021-01-01 12:00:00| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:01| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-01 12:00:02| Lynx rufus Mg/ Full Moon
CAMO1 2021-01-11 13:00:00{ Homo sapiens MH G / LastQuarter
CAMO1 2021-01-11 13:00:01| Homo sapiens MH g / Last Quarter
CAMO1 2021-01-11 13:00:02| Homo sapiens MH G / Last Quarter
CAMO1 2021-01-15 16:30:15| Lynx rufus Mn e/ Last Quarter
CAMO1 2021-01-15 16:30:16| Lynx rufus Mn e/ Last Quarter
CAMO02 2021-01-02 10:00:00{ Homo sapiens dhe / Full Moon
CAMO02 2021-01-02 10:00:01| Homo sapiens dhe / Full Moon
CAMO02 2021-01-02 10:00:02| Homo sapiens dhe / Full Moon
CAMO02 2021-01-09 23:00:01| Lynx rufus Ho/ Last Quarter
CAMO2 2021-01-09 23:00:02| Lynx rufus H6/ Last Quarter
CAMO02 2021-01-09 23:00:03| Lynx rufus Ho/ Last Quarter
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camera in the monitoring grid.

However, thids avery oversimpified dataset. In scientifistudies where therecommendedminimum
number of cameras is arourt-50,and the minimum length of monitoring time requaddo obtain a

feasible sample of the biodiversity3ss weekgKayset al. 2020, the dataset may be thousands, if not

over a million rows each representing a single image takKef.thenumber of images taken in




sequencedo not actually telme muchabout the species identified within the imagesside from

perhaps providingnformation onwildlife behaviour (e.g. it may be the case that multiple consecutive
AYEF3SEa 2F F &ALISOASE FNB AYRAOL (. Ko pupbsesy@iINE o NBf | E-
assume the goal of the study is not related to quantifying behaviour imtays and asnentioned

previoudy, | will need to filter the primary images for each species at ezrheraapartfrom the

secondary images. In order to do thiseed todefinel G KNBaK2f R 2F AYRSLISYRSyYyO

A threshold of independence is some time int& at which subsequent imageanbe considered
independent detection events.é. not related to the images taken prior). For many wildlife studies, the
standardindependence threshol around 30 minutes of camera inactivity between images to
confidertly say that the images are independent of one another (Burton et al. 2Ub&)e is currently

no widely-acceptedstandard for human detections, as the study of humans via CTs is a relatively new
undertaking. However, in light of thigpicallygoatoriented nature of recreationists (i.e. recreationists
often have an objective to reacha viewpoint, orthe end of the trail) and the tendency for higtaffic
trails to see mltiple recreationists within the span of 3@inutes, the independence threshold for
humans on CTeouldreasonablybe lessthan that of wildlife. In the most extreme recreational hotspots
periods of camera inactivity may not exist for longer than a minute, meaning this threshgid be set

at subminute levelgo obtain accurate estimates of trail traffieloweverin most regions, a threshold

of one minutecouldlikely sample the total number of trail users while still representing the true

G A Yy RS LIS of deegtionSvents as it is meant to be documented.

Applying thesaendependencehresholds tathe dataset, and filtering out imageghat are represented by
images taken within the independence threshthé data now looks like

Location Date/Time Species Temperature | Lunar Phase
CAMO1 2021-01-01 12:00:00 | Lynx rufus Mng/ Full Moon
CAMO1 2021-01-11 13:00:00| Homo sapiens MH 6 / Last Quarter
CAMO1 2021-01-15 16:30:15| Lynx rufus Mn e/ Last Quarter
CAMO02 2021-01-02 10:00:00| Homo sapiens e/ Full Moon
CAMO2 2021-01-09 23:00:01| Lynx rufus H6/ LastQuarter

This is a much more easily digestible dataset to work with, reggsignificantly lessomputingpower

to manipulate, and prodingimmediatelyrelevantinformation regarding the prevalence of each species
in this study systemith this dataset, it is much simpler to move into a framework whare might
confirm or deny the existence of recreational disturbance to wildlife, and further discern precise
thresholds at which this disturbance becomes evident.



IIl.METHOD ONBASIC INDICES OF DISTURBANCE

Establishing a threshold at which effects of recreation become adverse can be diicalise
thresholds may not exist, or the collected data may be too sparse for investigatimglimits(Dertien et
al. 2021) Onemethod ofdeterminingwhether recreatonal disturbancemight existis to contrastthe
mean values of recreational activity (or some comparable indetgctedat a camera during some
timeframe against the number of species detected at that camera during the same timeframe

To begin] cancdculate the number of independent hiker detections and independent bobcat
detections seen at a given camera during a given day of the study. For the Golden Ears dataset,
members of The Wildlife Coexistence ld@ployed 58 cameras for approximately 1.5 yeaesulting in
HOXyTc -RIOE &S MehohdaBasifylecamera is active counts as one camdey.Hence this
datasetwould consist of 23,876 rows, each corresponding to a cardaya and columns ithe dataset
could indicate the number afecreationists or wildlife deteetd at acameraday.

Oncethe data have been molded into this format;anvisualizethe datato evaluateif any trends are
immediatelynoticeable For instancel canplot the numberof hikers detectedoer cameradayaganst
the number of bobcats detected per cameday:

2001

1504

100+

Hikers detected per camera-day

0 1 2
Bobcats Detected per Camera-day
Figurel: The number of hikers detected per camatay (yaxis) contrasted against the number of bobcats
detected per cameralay (xaxis). Each point represents a single day that a camera was active.



Note that t seems somewhat rare for bobcats to occur twiceha same cameraay (Fig. 1n =5
instance$, sol mightinsteadlook at whether bobcats were detected or nets(abinary categorical
variable), rather than how many bobcats were detectaddunt variable).
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Figure2: The numbe of hikers detected per camefday (yaxis) contrasted against whether a bobcat was
detected during that camerday (xaxis). Each point represents a single day that a camera was active.

Thereappeardo be a trend of bobcats not being detected at cameras with especially high numbers of
hikers percameraday (Fig. 2) In fact, itseens unlikely bobcats would ever be detected at a camera that
saw more than 75 hikers per déyne maximum number of hikers detectéla cameraday where at

least one bobcat was also detected)

However, sing the maximum number of hikers seen during a carteawhere a bobcat was detected
to determinethresholds of disturbancemaybe misleadingas anomalies in the data mpyoduceover
estimates. For instance, although the maximum number of hikers seen during a catagrahere a
bobcat was detected is 78|l other cameradaysin whichabobcatwas detectedsawsignificantly lower
levels of hker activity (all less than 50 hikers per camdey). Thereforel may want toinstead explore
other pertinentvalues(e.g. themedian or meahof hiker traffic
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Figure3: A boxplotandviolin plot toillustrate various indices dfikers detected per camerday atcameraswhich
alsodetected bobcats. The largest width of the violin pod the horizontal line running through the box both
represent the mediarf= 1 hikemper cameraday). The top and bottom of the box represent theénquartile range,

with the top representing the ™5 percentile(= 6.75 hikers)and the bottom representing the #5ercentile(= 0
hikers) The whisker (vertical line) above the box illustrates 1.5x the interquartile range, which is a representation
of where the maximum value is expected to (3e17.5 hikers)Dots above the whisker represent outliers

Themedian value of hikerdetected in a cameraay which also detected a bobcat wa®und 1, while

the mean was 5.1{Fig. 3)Further, he third quatile of this dataindicates 75% of bobcat detection
occurred atcameraswith less than 6.75 hikers per délyig. 3) Therefore] might have reason to believe
the threshold at which recreation begins to displace bobcats is much lower than the maximum number
of hikers bobcats can actually toleratgut how does this compare wamerasvhich did not see any
bobcats?
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Figure 4Boxplds and violin plots to illustrate various indices of hikers detected per cah@yaatcameraswvhich
both did and did not detect bobcats. Trends are difficult to assess visually in this plot, due to an excess of camera
days which detected neither bobcatemhikers, skewing the left side of the plot dramatically.

It is difficult to discern any trends visualljnile plotting this due to the pervasive number of camera
days whictcapturedneither hikersnor bobcats (many doubleero valuesonflating the lef side of the
plott more on this latey, but the maximum number of hikers seen at camdegys without bobcats was
233(Fig. 4) Likewise, thenedian,mean and third quartilehikers per cameralaywere 0, 4.54, and 1
respectively(Fig. 4)Comparinghis tothe cameradays which did detect bobcatshave the following:

Tablel: Quantities of the maximum, median, mean, and thipdartile hikers per camerday atcamera which
detected bobcats againsamera which did not detect bobcats.

Index Cameradayswhich did not detect Cameradayswhich detected
bobcats bobcats

Maximum # hikers 233 75

Median # hikers 0 1

Mean # hikers 4.54 5.17

Third Quartile # hikers 1 6.75

From this,one cansee the apparently disparate conclusions regarding thresholds that might be drawn
using onlithe most basiéndices of the number of detections. Utilizing the maximum number of hikers
detected, one might conclude that 75 is the highest number of hikersaeeraday that bobcats can
tolerate. However, the conclusions drawn when comparing the median, meanirdrgartiles seem to
indicate that bobcats are actually more likely to be detectedanheradays with at least some level of

12



hiking activity(Table 1)This is however likely due to thdargenumber of cameradays which did not
detect either hikers obobcats.Omittingthese data mayherefore be more informative fomy
purposes

2607

200
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Hikers detected per camera-day
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Figure5: Boxplots and violin plots to illustrate various indices of hikers detected per cadiagratcamera which
both did and did not detect bobcats, with the datasetiied to cameradays which detected at least one of either
(no doublezeros).It now appears that the mean, median, and third quartile number of hikers per cadsra
might be greater atamera which did not detect bobcats, but again, these treadsstill somewhatunclear

OnceL Q@S 2amkradayS Rhere neither hikers nor bobcats were detecteliminating double
zero data) | have a significantly smaller sample size (n69® cameradaysvs. n = 23,876 cameidays.
However, the ploisslightlyeasier to visually assefisig. 5) and the statistics make more sense
Therefore, br the remainder of this report, | use this newly filtered dataset.

Table2: Quantities of the maximum, median, mean, and thiydartile hikers per cameralay atcamera which
detected bobcats againseimera which did not detect bobcats. Data has been filtered so that caiti@ya which
detected neither bobcats nor hikers are excluded.

Index Cameradayswhich did not detect Cameradayswhich detected
bobcats bobcats

Maximum # hikers 233 75

Median # hikers 6 1

Mean # hikers 16.56 5.17

Third Quartile # hikers 18 6.75

Whenl only considecamera that detected either hikers, bobcats, or both, the comparison of indices of
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hiker activityappear toshow bobcat avoidance of hikers. Regardless of the indegto make this
comparison (i.e. maximum, median, mean, or third quartile number of hikeobgdis areoverall
detected more often at cameras with lower levels of hiker acti{iigble 2)

If L GIkR some statistics to go along with thisan perform aVelsch twesamplet-test whichcompares
the meanhikers per cameralayof the two categories, and assesses the significance of this difference.
In doing this,I canconfirm the difference in means is not equal to O (t = 15.115, df = 315.27, p< 2.2e
16). This provides support for speculation that bobcats may be displacetkérshHowever, it does not
provide aprecisethreshold estimate at which this displacement occigrther, these methods lack
considertion for a variety of other factors that maglsoinfluence bobcat detection probabilite.g.
habitat, prey availability)

Therefore while this method may be rather simpie implement,and offer evidence for thexistence
of recreational displacementstill likely need to perforna more thoroughanalysiswith statistical
models that considerlternative explanations of bobcat habitat usehese modelsould also potentially
prove fruitful inproviding concrete estimates of a threshold at whigcreationaldisplacement occurs
One such model that is straightforward to develop, and may be usethis exploration islogistic
regressiormodel.

14



I\V/.METHOD TWQ.OGISTIC REGRESSION

Logistic regression is one of the most commonly applied statistical analyses in wildlife habitat use
Y2RSttAy3d 65NBg IS dADE)@ndcanibgefforntet! iR G2&rly any Statistical
software This analysisontrastsa binary variable (Q,) against some explanatory variable(g)erefore
estimating how the probabilitpf the outcome(0-1) changes with the explanatory variablie my case,
L Qnterested in how the probability of detecting a bobdatany given camerday changes withn
increasng number of hikers detecteth that cameraday.

For clarificationit shouldbe noted that someCT studiesonsiderdetection probability as the
probability that an animal will be detected, given itrsthe vicinity of the camera, therefore alluding to
the fact that some species may not be detected by a carifiehey do not travel directly in front df,
even if they use the habitgFig. 6; Burton et aR015). Note that fomy purposes] aminstead using the
term detection probability to indicate the probability that a bobcat uses the habitat.

Broader scale considerations

- Animal density and movement

- Size and selection of sampling units
- Number and location of cameras

- Use of attractant

- Survey duration

- Analytical assumptions

Camera-scale considerations

- Camera specifications

- Animal body size and temperature

- Movement speed, behaviour, group size
+ Ambient temperature and light

* Vegetation and other obstructions

Figure 6A figure from Burton et a(2019x ¢ KA OK Af f dza NI} 4Sa GKS @I NX 2 dza
LINPOFOAfAGRE | & AcBmera&rapiudies Yanypuposess A& Bsind tlis definition of
detection probability, andaminstead referring to detection probabilitys the probability an animal will use a
particular habitat.

Tl OG0 2



Tobegin | canconstructa simple logistic regression which contrastsethera bobcat was detected
during a cameralay against the number of hikers seen during that cantzag

1.004 AR ¢ o ¢ o .
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Hikers detected per camera-day
Figure7: lllugtration of a logistic regression contrasting the probability of detecting a bobcat during a calagra
(y-axis) against the number of hikers detected at that carvaag (xaxis). The regression is shown as the blue line,
whichshowsa decreasing probabijitof bobcat detection with each additional hiker detected.

Here,l can see the blue line asvesualrepresentation othe regression, where the relationship between
the two variablesshowsbobcat detection probabilitglecreases as the number loikers increases
approaching zerat around 2530 hikers per cameralay (Fig. 7)

Table3: Statistics associated with the logistic regression which contrasted bobcat detection
probability per cameralay against the number of hikers detected per carmdag

Term Estimate SE p-value
Intercept -2.90% 0.0943 < 2el6
Coefficient of Hikers -0.0716 0.0151 4.85e10

Under standard levels of statistical significance, wiyghicallyrequire p < 0.05, the negative
relationship between the number of hikers abhdbcat detection probability is statistically significant.
Further, the estimates of coefficiescan inform a mathematical approach to using this model.
Accordingly] can write this equation out for further exploration as:

a € "PGQO BT O OB X @@
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Where p represents the probability of detecting a bobcat during a cardaya and x is the number of
hikers seen at that cameday. Note that if the number of hikers is equal to zero, the equation
becomes:

a€"QGQo cRTMTOQ

Or:

| I% CBTO QP

Then,| can solve for p:
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Thisimpliesthat in areas or times of zero hiker activithere isa 5.2% chance of detecting a bobcat.
While this percentagenight seenlow, bobcatsare elusiveoften maintain low population densities,
andthere is avast amount of land between camesthat bobcats could be occupyinghereforethis
estimatemay bequite reasonable

Following a similar procedurécould also determine the approxate number of hikers at whictine
probability of detecting a bobcat on a given cameey becomes zero. However, log(gdlwhen p =0
is unsolvable, sbwould need to instead solve fonaerylow probability. Say, 0.@) or 0.5%
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From this| gather ifl want even a 0.5% probability of detecting bobcats on anpyp€ameras, the
number of hikers seen on that camera must not exceed 33 hjj@rsameraday.

However thismodelfails to account for other factors that may also be influencing the probability of
detecting a bobcat, such as habitpiality or prey availabity. To this endl might want toconstruct
anotherlogistic regression which incluglthis information asadditionalpredictor variabls. Reflecting
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on the prior regressiorl,modeledbobcat detection probability as a function of the number of hikers
sean:

N oOé oOEBMD Qo MEXQQT i

In order to include prey availabilitywould likely need more data than cée gathered with camera
traps (e.g. live trapping of small mammalsjowever, there are pertinent environmental variables that
can becolleciedin the field or derive usingGIS. Brhaps the percent of crown closure at a particular
camera location and the distance from this location to the urbaldland boundary are alsenportant
factors to include in this modelcan add these to the model as such:

N QOE wBBD QOO MEFQQIM ¢ Daéi 0N 0 DELED £ QNI
Rerunningthe regression with these new variablésoquire the following statistics
Table4: Statistics associated with the logistic regression which contrasted bobcat detection
probability per cameralay against the number of hikers detected per carméag, as well

as the percent crown closure at a partiaucamera and the distance from the camera to
the urbanwildland boundary.

Term Estimate SE p-value
Intercept -3.6390 0.3655 <2el6
Hikers -0.0677 0.0110 6.16e10
Crown Closure 0.0200 5.42e-3 0.0002
Distance to Boundary -2.65e4 3.90e5 1.04ell

Using asignificance level gf < 0.05,] can see thaglthoughthe hiker variable is still significargp are

the additional two variablesThus hikers negatively impact the probability of detecting a bobcat, but
bobcats are also more likely to be detected in areas of higher crown closure, and areas closer to the
urbanwildland boundary! can similarlyusethese numberd¢o form anequation:

a € "QiQo o o wmEsl @ XXMQQI f8i¢ mMEtOBOG £ | 0 TEON T ¢ (UAD @é 68 Q
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their average values across the cameras (meawi closure = 62.98%, mean distance to boundary =
3215.3m). Thisiges me
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So, for a camera with average crown closure and average distance to thewilbéand boundarypn a
day where zero hikerare detected, the probability of detecting a bobcat is equal to:
a€ "YQoOo o op T
L‘ T8t 0 wu
p N
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However, this 3.8% probability in the midst of no hikers is subject to change depending on the crown
closure and distance to the urbamildland boundary. Not to mention, the variety of other factors that
may be influencing bobcat habitat usehichwere notmodeled explicitly.

Neverthelessthe original goal of determining a threshold is still possible in this framework. As béfore,
can alsasolve for the approximate number of hikers at which bobcat detection probability is
approximately zeroAgain,| will assumea 0.5%probability of detection, and average values for crown
closure and distance to the urbamildland boundary

a¢€Q@omu o o wmdt @ XIXQQQI p& ¢ p ML O T
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This estimate 08O hikers per day to almost entirely displacelwats is similar tohe prior estimate, but
now | have the added flexibility of being able to include various levels of crown closure and distances
from the urbanwildland boundary intony model to form more precise estimates of bobcat detection
probability across the park.

Yet, the main goal of this exploration is to establishgorousframework through whichio determine
precisethresholds of recreational activity at which wildlife species are displaced. Logistic regression is a
good start, but this framework proposes thecan only bdinear relationshig between the predictor
variables (e.g. number of hikers) and the responge the probability of detecting a bobcat). However,

it may be the case that the relationships between these variables are nonlinear, and thettefesbold
estimatesmaynot be entirely accurate. In order to determine whether nonlinear relationshipsteris

this system] will need to adopt another tool: nonlinear regression.
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\V.METHOD THREGENERALIZED ADDITIVE MODELS

Generalized additive mode{&AMs)are a useful tooto discern whethethere are nonlinear
relationships betweermn explanatory vaable and the outcomgand to make strong predictions about
the effect of this relationship (Pedersen et al. 20F3)r instance, sombobcatsmaybe able to tolerate
hikers up to a certain level, beyond which thagybecome increasingly displaced by adutial hiker
activity. If this were the casd,might expect bobcat detection probability to B@emewhatconstantup

to a certain quantity of hikersand subsequently that bobcat detection probability would decrease
beyond this level of hiker activity

Identifying such aonlinearrelationship would be ideal in the search for a threshold of hikers, as the
guantity of hikersat which bobcatletection probability begins to decrease may be a reasonable
estimate of the thresholdHence, GAMsould be a usefiuool for threshold identification

GAMsoperateby including an additional term (or terms) indostandard regressioaquation for every
predictor variableBefore explainindpow thisis done L Girt feflect on the equation for a generalized
linear model:

NOEOOOD T ©

In this,p(bobcat) represents the probability of detecting a bobcat at any instafic&is the intercept
of the model,3;is the coefficienfor the first predictor variable (e.g. # hikergndx is the value ofhe
first predictor variable at instandeThe generalized additive model is nearly identical to this fdoum,
instead of holding a constant coefficielft ) for each termthere is a fumtion (f()) whichenforces a
nonlinearcsmoothd | afanati&n on the explanatory variahle

NOEOOOD "Q
Here,f() is somesmoothbasisfunction, which allows the relationship betwedme predictor 1) and
the response §(i)) to be nonlinearln truth, the equation actually looks like:
nNoéoodd Qv Qo E Qo

Where there is the option to havedifferent smoothbasisfunctions each operating on the same
predictor variableallowing forseveral diferent forms of nonlinearityn the regressionA pertinent
illustration ofthis follows:
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Figure8: Three different generalized additive model (GAM) examples from an online course on GAMs taught by
Noam RossThese plots show the effects increasing numbers of smooth basis functiom®halre overall

regression of a GAM. The leftmost plot illustrates how 3 smooth basis functions provide a simpler nonlinear
regression, while the center and rightmost plots illustrate how increasing smooth basis functions to 7 and 12
respectively increasethe nonlinearity of the function.

Asi KS ydzYoSNJ 2F avz220GK o0l aia 7¥dzfagigssianindalsdigc@asdsl 4 S a =
(Fig. 8) This is because the regression linthis sumof many basis functions being fit togetheach

with their own statisticsthat determine thecurvature of each functiarCritics of generalized additive
Y2RStAy3 a2YSGAYSa y20S GKFG GZFAGAWE£0 128 & KBdzyRO
statistical computing software®.g.the mgcv package in)RRave builtin functions which will

automatically derivean appropriate number of functions for each predictor variabiepenalizing each

additional functiontherefore minimizing ovefitting. For the sake of brevity in this exploratidrgmit

discussing how thigenalizing islone. Howeverinformation regarding the basics obnstructingGAMs

using the statistical software i, provided at thdollowing course:

https://noamross.qgithub.io/gamsn-r-course/

Movingon tofit the bobcat data from Golden Ears into a GAM framewbwkll usethe samefunction|
used in buildingny logistic regression:

N QOE wBBD QOO MEFQQIM ¢ haéi 0RO 0 BELED £ QNI
Adapting this to the GAM syntalxget:
noOé ORBED Q&0 0NMORl QO ¢ haéi 6 TI0RQN 0 @ELED £ QDI ©

Where each predictor variable has its own set of basis smoothing fun¢ti®nsnd the number of such
functions is automatically determined by the st#ital softwarel® using {n this casethe package
mgcyv in the statistical software R). The resultfitbhg this model are:
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Tableb: Statistics associated with the generalized additive model (GAM) which contrasted bobcat
detection probability per camerday against the number of hikers detected per carndast, as well

as the percent crown closure at a particular camera and the distitooethe camera to the urban
wildland boundary. Note that the model splits terms into parametric coefficients (for terms assumed
to have linear relationships with the response) and smooth terms (for terms assumed to have
nonlinear relationships with thesssponse).

Term Type Term Estimate SE p-value
ParametricCoefficients  Intercept -4.328 0.207 <2el6
EDF Ref.df p-value
Smooth Terms Hikers 2.947 3.536 8.0lell
Crown Closure 1.924 1.994 1.28e05
Distance to 6.914 7.750 6.53e12
Boundary

The first thing to note here is thalhe terms are split into two different types: parametric coefficients
and smooth termsParametric coefficients arprovided forterms which do not have smooth functions,
while smooth terms ar@rovided forthose that . | might know beforehandhat some termsndeed
exhibitlinearrelationships with the responsend should therefore not be modeled in a nonlinear
framework.In this casel could modelthesetermswithout smoothingfunctions,and the results would

insteado S NBLIR2NISR Ay (GKS aLI NI YSGNRO O2STFFTFAOASYlaé¢ a

The flexibility to dictatewhich terms are linear and whidermsare nonlinear is part of what makes
GAMssoappealing Further,the reportedstatisticscan help determine whether a variable should be

Y2ZRSEESR & F y2yfAYSENI OFNAI6fSd ¢KS a95Cé O2f dzy

the smoothing function, where an EDF of 1 is a flat, linear functiand each increase ofl EDFpertains
to anadditional smoothindunctionbeing modeledSo, an EDF = 1 would imply that the term shdeld
modelled parametricallyin this examplel can see that all three afiy variables are indeed better off
modelled as nonlinear term$¥ecause each EDFi4 (Table 5)

Similar to logistic regression, GAMs also providelpies for each term that can help determine

whether the relationship between the explanatory variabl@s#S Ay Of dzZRSR | yR G KS
detection probability) are significant. At tretandard significance level of p < 0.05, all threengf

variables appear to be significafitable 5) So,| can move into interpreting the model.

A closer look at the parti@lependencyplots (PDPspf each of these terms reveals th@proximate
shape ofthesenonlineartrends:
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Partial effect of # Hikers on p(bobcat detection)

Partial effect of Distance to Boundary on p{bobcat detection)
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Figure 9:These plotshowthe nonlinear relationship:
between each of these variables (top left: number ¢
hikersper cameraday, top right: crown closure (%),
bottom left; distance to boundary (m)) and the
response(bobcat detection probability per camera
day) given the other variables are all held at their
g means. The regressionsbownasthe solid black line
; while 95% confidence intervads this regressiomre
represented by the blue shading around bac

, . , r . : regression line.
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PDPdllustrate the nonlinear relationships betweeny explanatory variables anay response, given
the other explanatory variables are all held at their mean values. Inlttés, see thatvhen theother
variablesare held constant, bobcat detection probability is greatest in the absence of hikers (when
hikers = 0), at intermediate distances from the boundary (approximately 2500m), and intermediate
crown closure (approximately 6298)ig. 9) Howeverto determine the threshold at which the number
of hikersbegins todisplace bobcatd shouldtake a closer look any hiker plot
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Figurel0: The nonlinear relationship betweethe number of hikergper cameraday (x-axis) andbobcat detection
probabilty per cameraday (y-axis) given the other variables are all held at their means. The regression line is
illustrated with the solid black line, while 95% confidence intervals are represented by the blue shadingtheound
regression line.

Ideally,l would see aelatively consistenbobcat detection probability, up to some point wherbigins

to decrease. However, this sort of nonlinear relationship does not exist imibitel Instead,| see an
immediate decrease in detection probability up to some point where it levels out (e.g. where additional
hikers do not impact the already very low éetion probability)Fig. 10)Therefore similar to the

logistic regression framework before, to establish a threshold of disturbdmaight instead consider

the number of hikers which results in bobcat detection probability falling below some limit.

Mathematic estimation is difficult in a GAM framework given numerous smoothing functions can make
the regression equatioguite complex Therefore, a visual assessment naysimpler The intercept of
the plot aboveshows that bobcat detection probabilityith zero hikers is somewhere around’%
(similarto the logistic regressioastimateof around 3.8%jFig. 10) Yet, the point at which this
probability drops to 0.5% is around 22 hikers per carrgag, in contrast to the-30 hikersper camera
daythe logistic model predictedAdditionally; it appeasthat the curve flattens quite a bit around this
point, indicating that bobcat detection probability may remain around 0.5% for quantities of hikers
ranging fromaround 2260. After this, the detection probabtly slowly tapers off to zero, though the
confidence intervals widen due to a lack of data (i.e. there are not enough cetagsawith quantities
of hikers > 80 to make inferences about the relationship at this paoiiigrefore,l might propose a
threshod of around 22 hikers per cameday to effectively displace bobcats.
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One final stef need to take beford can be happy with this model, however, is to determine whether
the model fit is acceptableheexplanatory variables included aad significantat the p < 0.05 level, but
this tellsme very little abouthow well the model representgariation in thedata. In order to check this,

| can checkhe model performance with an outer newton optimizer:

Tableb: Statistics associated with an outeewton optimizer performed to assess the fit of the
generalized additive model (GAM) which contrasted bobcat detection probability per camera
day against the number of hikers detected per carréag, the percent crownlasure at a
particular camera, and the distance from the camera to the urb@dland boundary. The
optimizer indicated full model convergence after 8 iterations.

Term 1 Q EDF k-index p-value
Hikers 8.00 2.95 0.54 <2e-16
Crown Closure 2.00 1.92 0.91 0.2
Distance to Boundary 9.00 6.91 0.84 <2el6
Convergence Full model convergence after 8 iterations

The first thing to check here is model converger&atistical software will typically provide an
assessment of model convergence after performing an outer newton optimizer, which details whether
the model has converged (i.iglentified the single best solutiogiven the dataor not (i.e.identified

multiple equally plausible solutions). Full convergence is required to make any sort of substantiated
claims regarding the moddtorthis model,full convergence was achieved after eight iterations.

The next thing to lookt are the pvalues andk-indices However, contrary taypicalmodel testing |

want p-values that are greater than 0.05. Likewib@ant kA Y RA 0Sa GKF G FNB 3INBI (SN
EDF values that are not similar to one another. In this particular mtieede valuesre less than ideal

as the pvalues for the terms representing hikers and the distance to wadland boundary are both

very low. Likewise,-lndices for all terms are lessthanofeA YA f I NAGASE 6Sis6SSy 1Q |
concern inthis model, but given the other issggl might want to try to improve the model.

| can attempt to overcoméhe issueof model fitby increasing the number of smooth basis functions
enforced on the modelterms. It was mentioned previously thatost statistical software determine the
number ofsmooth basis functions automaticalllowever there is also an option to manually set these
numbers but the usershouldbe wary ofdoingthis to avoid oveffitting the model to the data.
Unfortunately, in the case of this model, no matter hovanysmooth basis functionare enforced on

the terms, the model still fails the optimizer test, indicating that adequate model performance may not
be achievable with the model written the way it is.

Thismay bedue to sparse detection data, as there are only 198 cardenss with bobcat detections
being contrasted against495 cameradays that did not detect bobcats. Such sparse data is
commonplaceri wildlife research, especially when attempting to model elusive speciearnivores.
So, it makes sense that for bobceads, elusivecarnivorous specieshe model is not performing well.
may therefore need to adopt alternative methods that are modejat at dealing with sparse data.
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\VVI.METHOOFOURRANDOM FOREST ALGORITHMS

Random foresalgorithms average the predictions made by some number (often hundreds or
thousands) of decision tre¢Breiman 2001)Therefore, in order to understand how a random forest
algorithm operatesa baseline understanding of decision treéssequired Decision treesnvolve a
machine learning algorithm thatan betrainedto makeprecise predictions about the outcomes of a
particular test(Safavian and Landgrebe 199h)this case,a decision tree coulthake predictions about
the probability of detecting a bobcabr morespecifically a binary classification of whether a bobcat
would be detected (1) or not (Opuch a binargutcomewould be modetd as acclassification treg,
though there are other decision trees (e.g. regression trees) which can predict continuous outcomes

The goal of a classification tree is to observe the data at laaanake decisions about which pretir
variables aranostimportantin classifying the outcome. In doing this, classification topemtify
precisevalues at whiclpredictor variables lead to varying classification outconidsis, m the context

of recreation thresholdsa decision treeould determine which predictor variables are most important
in predictingthe probability of detecting a bobcatvhile providing precise estimates about levels at
which thispredictionchanges. Note that like GAMs, decision trees allow for nonlinear trendaning
that predictor variables can be considered multiple timesefample of alecisiontree follows:

Number of cameras in group = 43
Mean Predator Count = 5 (SD=56)

<26 =26
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Count

Number of cameras in group = 16
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2144 uman <144
Count

Number of cameras in group = 27
Mean Prey Predator = 6 (SD=5)
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Figurell: An examplalecision(regressionjree from Muhly et al. (2011) that considers which variables (prey
count, human count, or cattle count) influence predator count most, and the values at which each of these lead to
different predictions of predator count.



























