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Above images were all taken at the same camera trap location, on a moderately popular trail (Incline) in Golden Ears Provincial Park, BC. 

Images containing humans are limited to those who were able to provide consent (i.e. researchers involved in the project). 

Top left: A bobcat (Lynx rufus) on the Incline trail at night following the reopening of the park after the COVID-19 closures 

Top right: ! άƘƛƪŜǊέ όǊŜǎŜŀǊŎƘŜǊύ ŀŦǘŜǊ ƛƴƛǘƛŀƭ ŘŜǇƭƻȅƳŜƴǘ ƻŦ ǘƘŜ ŎŀƳŜǊŀ on incline trail 

Bottom left: Another άƘƛƪŜǊέ όǊŜǎŜŀǊŎƘŜǊύ immediately after initial deployment of the camera on incline trail 

Bottom right: A bobcat on the incline trail in broad daylight during the COVID-19 closures
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SUMMARY 
 

Park managers are often required to simultaneously conserve wildlife and promote recreation. 

However, recreation may displace wildlife, challenging this dual-mandate. This challenge might be 

overcome by estimating a threshold limit of recreationists at which wildlife exhibit displacement, 

therefore informing and justifying trail-use limits. Unfortunately, these estimates are difficult to obtain, 

as they require data regarding both recreational traffic and wildlife habitat use. Further, once such data 

has been acquired, analytical methods for identifying thresholds vary widely. In this report, I highlight 

the utility of camera traps to obtain data regarding both recreational traffic and wildlife habitat use, and 

explore how this data might be used to identify thresholds of recreational disturbance. 

I begin with a brief summary of current literature regarding recreation ecology, underscoring a paucity 

of these studies being translated to policy. Following this, I highlight how camera traps may be useful in 

this field, being able to collect long-term data on both recreation and wildlife. I then provide an 

overview of how camera trap data is often structured. Moving on, I highlight four methods of identifying 

a threshold of disturbance with this data, beginning with the easy-to-implement, but less informative 

methods, and subsequently moving into more difficult, but statistically rigorous methods.  

Specifically, I show how data visualization and simple analyses may be used to investigate the existence 

of recreational disturbance, but may not provide concrete estimates of thresholds. I then use linear 

regression to identify a potential threshold, emphasizing the capacity for this method to control for 

other sources of environmental variation influencing wildlife distributionsΣ ōǳǘ ǎǘǊŜǎǎƛƴƎ ǘƘƛǎ ƳŜǘƘƻŘΩǎ 

lack of consideration for nonlinear relationships. Following this, I use generalized additive models to 

investigate nonlinear relationships, but show how sparse data (which are common in wildlife research) 

may lead to issues in model fitting. Finally, I showcase the utility of random forest algorithms in dealing 

with sparse data, emphasizing that thresholds estimated this way may be conservative unless 

supplemented with an adequate amount of data regarding alternative drivers of wildlife distributions.  

I propose that simpler methods of estimating recreational thresholds may not be statistically rigorous 

enough to justify trail limits, but more complex methodsτwhen supplemented with enough data 

regarding alternative drivers of habitat useτmay provide a thorough evidence-based mode of 

establishing trail limits. I encourage park managers to carefully consider methods employed to discern 

thresholds of recreational disturbance, and to harness more advanced statistical models when 

appropriate. In conclusion, I accentuate the usefulness of an ecosystem-wide monitoring approach 

paired with random forest algorithms to discern precise estimates of thresholds, which would bolster 

rationale in making decisions regarding park management 

Throughout the text, I provide examples of each analytical approach utilizing bobcats (Lynx rufus) as a 

study organism in the context of Golden Ears Provincial Park, British Columbia.
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I. INTRODUCTION 
 

Increasingly, researchers worldwide are uncovering the various deleterious impacts non-consumptive 

recreation may have on wildlife (Larson et al. 2016). With recent dramatic increases in recreation (BC 

Ministry of Environment 2019), and the projected growth of this activity in the future (White et al. 

2016), understanding how recreation affects wildlife is crucial to biodiversity conservation. This is 

especially pertinent in protected areas, which are often managed under a dual-mandate to 

simultaneously provide recreational opportunities while conserving biodiversity (Sarmento & Berger 

2007; Thomas & Reed 2019). The need to balance these seemingly disparate goals has been pivotal to 

ǘƘŜ ŜǎǘŀōƭƛǎƘƳŜƴǘ ƻŦ ǘƘŜ ŦƛŜƭŘ ƻŦ άǊŜŎǊŜŀǘƛƻƴ ŜŎƻƭƻƎȅέΦ  

Recreation ecology studies often seek to understand wildlife spatiotemporal displacement in response 

to recreation (Lesmerises et al. 2018), but may also explore physiological responses (Arlettaz et al. 

2007), changes in reproductive success (Finney et al. 2005), or altered behaviour (Geoffroy et al. 2015), 

especially in response to faster-paced recreation (Naidoo & Burton 2020). However, the repercussions 

of such research are unclear, as few of studies attempt to translate results into tangible policy 

recommendations for park managers.  

Translating science into policy is a common barrier that prevents progress from being made in many 

fields (Thompson et al. 2011). In recreation ecology, this obstacle is heightened when researchers fail to 

utilize continuous measures of recreation extent, which could then be used to identify thresholds at 

which recreation begins to disturb wildlife (Dertien et al. 2021). Such continuous measures of 

recreational activity can be acquired through the deployment and maintenance of camera traps, which 

can simultaneously monitor recreation and wildlife (Naidoo & Burton 2020).  

Here, I explain the structure of camera trap data, and how this data might be used to identify 

thresholds. Then, I explore four analytical methods for threshold identification, beginning with the most 

basic, but least statistically sound methods, and moving into more complicated, but statistically rigorous 

methods for assessing thresholds. To assist with illustrating these methods, I use camera trap data from 

Golden Ears Provincial Park, British Columbia, to evaluate recreational thresholds at which the 

disturbance of bobcats (Lynx rufus) becomes evident. This species was chosen as it has been noted in 

prior literature to respond negatively to recreational pressures (George & Crooks 2006; Reed & 

Merenlender 2008), and preliminary analyses of this dataset (Procko & Burton, unpublished data) have 

indicated bobcats in this study area may also be negatively impacted by hikers.



 

II. CAMERA TRAP DATA  
 

Camera traps (CTs) are a non-invasive and cost-effective method of wildlife monitoring (Burton et al. 

2015), and the data from CTs can be used to explore multitude relationships between wildlife and 

various forms of anthropogenic disturbance (e.g. habitat modification in Tattersall et al. 2020, human 

voices in Suraci et al. 2017,  or recreation in Naidoo & Burton 2020). CTs come in many shapes and sizes, 

with technical features varying widely, but most modern CTs operate on an infrared sensor system, 

taking photos of the area directly in front of them after sensing a temperature which differs from that of 

the ambient environment (e.g. warm-blooded animals).  

Accordingly, when triggered, the data acquired through CTs is relatively consistent. CTs offer a precise 

moment in time in which to view a specific location through a window (the visible zone directly in front 

of the camera lens), while additional data (e.g. temperature, lunar phase) specific to that moment may 

also be recorded (Swann et al. 2011). However, no CTs on the market today are capable of identifying 

species in real-time, so once SD cards are collected from a CT, the images on the SD card will need to be 

uploaded to a computer for image identification. For my purposes, I will not elaborate on this process. 

However, resources for this, and other CT data management processes may be found at 

https://wildcams.ca/library/.  

Once the photos from a camera have been identified, one row of the data (representing a single photo) 

might look like this: 

Location  Date/Time Species Temperature Lunar Phase 

CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 

 

Although, since CTs are continuously operating technologies, and can be triggered multiple times by the 

same individual, the data for an individual detection event often contains multiple rows: 

Location  Date/Time Species Temperature Lunar Phase 

CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:01 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:02 Lynx rufus млɕ/ Full Moon 

 

Eventually, the first captured image will need to be filtered apart from subsequent images because I 

ŘƛŘƴΩǘ ŀŎǘǳŀƭƭȅ ŎŀǇǘǳǊŜ ǘƘǊŜŜ ōƻōŎŀǘǎ ƘŜǊŜτjust three images of the same bobcat. But for now, I will 

remain focused on building up this dataset to resemble a more realistic CT dataset, and revisit this topic 

of filtering out multiple images of the same individual later. Adding the complexity of long-term 

continuous monitoring, the data begins to look like this: 

Location  Date/Time Species Temperature Lunar Phase 

CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:01 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:02 Lynx rufus млɕ/ Full Moon 

https://wildcams.ca/library/
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CAM01 2021-01-15 16:30:15 Lynx rufus мпɕ/ Last Quarter 
CAM01 2021-01-15 16:30:16 Lynx rufus мпɕ/ Last Quarter 

 

Where the additional images were taken two weeks after the first three images.  

Then, with the potential for multiple species, or people, to be detected at a single location, the data 

might realistically look more like: 

Location  Date/Time Species Temperature Lunar Phase 

CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:01 Lynx rufus млɕ/ Full Moon 
CAM01 2021-01-01 12:00:02 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-11 13:00:00 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-11 13:00:01 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-11 13:00:02 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-15 16:30:15 Lynx rufus мпɕ/ Last Quarter 

CAM01 2021-01-15 16:30:16 Lynx rufus мпɕ/ Last Quarter 

 

This is, however, just how the data may appear for one camera. Most projects require more than one 

camera, so a dataset ǿƛǘƘ ƻŦǘŜƴ ƘŀǾŜ ƳǳƭǘƛǇƭŜ ά[ƻŎŀǘƛƻƴǎέΦ CƻǊ ƛƴǎǘŀƴŎŜΣ ŀŘŘƛƴƎ ŀƴƻǘƘŜǊ ŎŀƳŜǊŀ Ƴŀȅ 

result in a dataset resembling this: 

Location  Date/Time Species Temperature Lunar Phase 
CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:01 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-01 12:00:02 Lynx rufus млɕ/ Full Moon 

CAM01 2021-01-11 13:00:00 Homo sapiens мнɕ/ Last Quarter 
CAM01 2021-01-11 13:00:01 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-11 13:00:02 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-15 16:30:15 Lynx rufus мпɕ/ Last Quarter 
CAM01 2021-01-15 16:30:16 Lynx rufus мпɕ/ Last Quarter 

CAM02 2021-01-02 10:00:00 Homo sapiens фɕ/ Full Moon 

CAM02 2021-01-02 10:00:01 Homo sapiens фɕ/ Full Moon 
CAM02 2021-01-02 10:00:02 Homo sapiens фɕ/ Full Moon 

CAM02 2021-01-09 23:00:01 Lynx rufus нɕ/ Last Quarter 

CAM02 2021-01-09 23:00:02 Lynx rufus нɕ/ Last Quarter 

CAM02 2021-01-09 23:00:03 Lynx rufus нɕ/ Last Quarter 

 

²ƘŜǊŜ ǘƘŜ ά[ƻŎŀǘƛƻƴέ ŎƻƭǳƳƴ ǊŜŎŜƛǾŜŘ ŀ ƴŜǿ ŎŀǘŜƎƻǊƛŎŀƭ ǾŀǊƛŀōƭŜ: ά/!aлнέ, representing an additional 

camera in the monitoring grid. 

However, this is a very oversimplified dataset. In scientific studies, where the recommended minimum 

number of cameras is around 40-50, and the minimum length of monitoring time required to obtain a 

feasible sample of the biodiversity is 3-5 weeks (Kays et al. 2020), the dataset may be thousands, if not 

over a million rows each representing a single image taken. Yet, the number of images taken in 
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sequence do not actually tell me much about the species identified within the images, aside from 

perhaps providing information on wildlife behaviour (e.g. it may be the case that multiple consecutive 

ƛƳŀƎŜǎ ƻŦ ŀ ǎǇŜŎƛŜǎ ŀǊŜ ƛƴŘƛŎŀǘƛǾŜ ƻŦ ƳƻǊŜ άǊŜƭŀȄŜŘέ ƻǊ άǎŜŎǳǊŜέ ōŜƘŀǾƛƻǳǊύ. For my purposes, I will 

assume the goal of the study is not related to quantifying behaviour in this way, and as mentioned 

previously, I will need to filter the primary images for each species at each camera apart from the 

secondary images. In order to do this, I need to define ŀ άǘƘǊŜǎƘƻƭŘ ƻŦ ƛƴŘŜǇŜƴŘŜƴŎŜέΦ  

A threshold of independence is some time interval at which subsequent images can be considered 

independent detection events (i.e. not related to the images taken prior). For many wildlife studies, the 

standard independence threshold is around 30 minutes of camera inactivity between images to 

confidently say that the images are independent of one another (Burton et al. 2015). There is currently 

no widely-accepted standard for human detections, as the study of humans via CTs is a relatively new 

undertaking. However, in light of the typically goal-oriented nature of recreationists (i.e. recreationists 

often have an objectiveτto reach a viewpoint, or the end of the trail) and the tendency for high-traffic 

trails to see multiple recreationists within the span of 30-minutes, the independence threshold for 

humans on CTs could reasonably be less than that of wildlife. In the most extreme recreational hotspots, 

periods of camera inactivity may not exist for longer than a minute, meaning this threshold might be set 

at sub-minute levels to obtain accurate estimates of trail traffic. However, in most regions, a threshold 

of one minute could likely sample the total number of trail users while still representing the true 

άƛƴŘŜǇŜƴŘŜƴŎŜέ of detection events as it is meant to be documented. 

Applying these independence thresholds to the dataset, and filtering out images that are represented by 

images taken within the independence threshold the data now looks like: 

Location  Date/Time Species Temperature Lunar Phase 

CAM01 2021-01-01 12:00:00 Lynx rufus млɕ/ Full Moon 
CAM01 2021-01-11 13:00:00 Homo sapiens мнɕ/ Last Quarter 

CAM01 2021-01-15 16:30:15 Lynx rufus мпɕ/ Last Quarter 

CAM02 2021-01-02 10:00:00 Homo sapiens фɕ/ Full Moon 
CAM02 2021-01-09 23:00:01 Lynx rufus нɕ/ Last Quarter 

 

This is a much more easily digestible dataset to work with, requiring significantly less computing power 

to manipulate, and providing immediately relevant information regarding the prevalence of each species 

in this study system. With this dataset, it is much simpler to move into a framework where one might 

confirm or deny the existence of recreational disturbance to wildlife, and further discern precise 

thresholds at which this disturbance becomes evident. 

 



 

III. METHOD ONE: BASIC INDICES OF DISTURBANCE 
 

Establishing a threshold at which effects of recreation become adverse can be difficult because 

thresholds may not exist, or the collected data may be too sparse for investigating such limits (Dertien et 

al. 2021). One method of determining whether recreational disturbance might exist is to contrast the 

mean values of recreational activity (or some comparable index) detected at a camera during some 

timeframe against the number of species detected at that camera during the same timeframe.  

To begin, I can calculate the number of independent hiker detections and independent bobcat 

detections seen at a given camera during a given day of the study. For the Golden Ears dataset, 

members of The Wildlife Coexistence Lab deployed 58 cameras for approximately 1.5 years, resulting in 

ноΣутс άŎŀƳŜǊŀ-ŘŀȅǎέΣ ǿƘŜǊŜ each day a single camera is active counts as one camera-day. Hence, this 

dataset would consist of 23,876 rows, each corresponding to a camera-day, and columns in the dataset 

could indicate the number of recreationists or wildlife detected at a camera-day.  

Once the data have been molded into this format, I can visualize the data to evaluate if any trends are 

immediately noticeable. For instance, I can plot the number of hikers detected per camera-day against 

the number of bobcats detected per camera-day: 

  

Figure 1: The number of hikers detected per camera-day (y-axis) contrasted against the number of bobcats 
detected per camera-day (x-axis). Each point represents a single day that a camera was active.  
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Note that it seems somewhat rare for bobcats to occur twice in the same camera-day (Fig. 1; n = 5 

instances), so I might instead look at whether bobcats were detected or not (as a binary categorical 

variable), rather than how many bobcats were detected (a count variable).  

 

Figure 2: The number of hikers detected per camera-day (y-axis) contrasted against whether a bobcat was 
detected during that camera-day (x-axis). Each point represents a single day that a camera was active. 
 

There appears to be a trend of bobcats not being detected at cameras with especially high numbers of 

hikers per camera-day (Fig. 2). In fact, it seems unlikely bobcats would ever be detected at a camera that 

saw more than 75 hikers per day (the maximum number of hikers detected in a camera-day where at 

least one bobcat was also detected).  

However, using the maximum number of hikers seen during a camera-day where a bobcat was detected 

to determine thresholds of disturbance may be misleading, as anomalies in the data may produce over-

estimates. For instance, although the maximum number of hikers seen during a camera-day where a 

bobcat was detected is 75, all other camera-days in which a bobcat was detected saw significantly lower 

levels of hiker activity (all less than 50 hikers per camera-day). Therefore, I may want to instead explore 

other pertinent values (e.g. the median or mean) of hiker traffic. 
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Figure 3: A boxplot and violin plot to illustrate various indices of hikers detected per camera-day at cameras which 
also detected bobcats. The largest width of the violin plot and the horizontal line running through the box both 
represent the median (= 1 hiker per camera-day). The top and bottom of the box represent the interquartile range, 
with the top representing the 75th percentile (= 6.75 hikers), and the bottom representing the 25th percentile (= 0 
hikers). The whisker (vertical line) above the box illustrates 1.5x the interquartile range, which is a representation 
of where the maximum value is expected to be (= 17.5 hikers). Dots above the whisker represent outliers. 
 

The median value of hikers detected in a camera-day which also detected a bobcat was around 1, while 

the mean was 5.17 (Fig. 3). Further, the third quartile of this data indicates 75% of bobcat detection 

occurred at cameras with less than 6.75 hikers per day (Fig. 3). Therefore, I might have reason to believe 

the threshold at which recreation begins to displace bobcats is much lower than the maximum number 

of hikers bobcats can actually tolerate. But how does this compare to cameras which did not see any 

bobcats? 
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Figure 4: Boxplots and violin plots to illustrate various indices of hikers detected per camera-day at cameras which 
both did and did not detect bobcats. Trends are difficult to assess visually in this plot, due to an excess of camera-
days which detected neither bobcats nor hikers, skewing the left side of the plot dramatically. 
 

It is difficult to discern any trends visually while plotting this, due to the pervasive number of camera-

days which captured neither hikers nor bobcats (many double-zero values conflating the left side of the 

plotτmore on this later), but the maximum number of hikers seen at camera-days without bobcats was 

233 (Fig. 4). Likewise, the median, mean, and third quartile hikers per camera-day were 0, 4.54, and 1 

respectively (Fig. 4). Comparing this to the camera-days which did detect bobcats, I have the following: 

Table 1: Quantities of the maximum, median, mean, and third-quartile hikers per camera-day at cameras which 
detected bobcats against cameras which did not detect bobcats.  

Index Camera-days which did not detect 
bobcats 

Camera-days which detected 
bobcats 

Maximum # hikers 233 75 
Median # hikers 0 1 
Mean # hikers 4.54 5.17 
Third Quartile # hikers 1 6.75 

 

From this, one can see the apparently disparate conclusions regarding thresholds that might be drawn 

using only the most basic indices of the number of detections. Utilizing the maximum number of hikers 

detected, one might conclude that 75 is the highest number of hikers per camera-day that bobcats can 

tolerate. However, the conclusions drawn when comparing the median, mean, or third quartiles seem to 

indicate that bobcats are actually more likely to be detected at camera-days with at least some level of 
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hiking activity (Table 1). This is, however, likely due to the large number of camera-days which did not 

detect either hikers or bobcats. Omitting these data may therefore be more informative for my 

purposes.  

 

Figure 5: Boxplots and violin plots to illustrate various indices of hikers detected per camera-day at cameras which 
both did and did not detect bobcats, with the dataset limited to camera-days which detected at least one of either 
(no double-zeros). It now appears that the mean, median, and third quartile number of hikers per camera-day 
might be greater at cameras which did not detect bobcats, but again, these trends are still somewhat unclear. 
 

Once LΩǾŜ ƻƳƛǘǘŜŘ camera-days where neither hikers nor bobcats were detected (eliminating double-

zero data), I have a significantly smaller sample size (n = 6,693 camera-days vs. n = 23,876 camera-days). 

However, the plot is slightly easier to visually assess (Fig. 5), and the statistics make more sense. 

Therefore, for the remainder of this report, I use this newly filtered dataset.  

Table 2: Quantities of the maximum, median, mean, and third-quartile hikers per camera-day at cameras which 
detected bobcats against cameras which did not detect bobcats. Data has been filtered so that camera-days which 
detected neither bobcats nor hikers are excluded. 

Index Camera-days which did not detect 
bobcats 

Camera-days which detected 
bobcats 

Maximum # hikers 233 75 
Median # hikers 6 1 
Mean # hikers 16.56 5.17 
Third Quartile # hikers 18 6.75 

 

When I only consider cameras that detected either hikers, bobcats, or both, the comparison of indices of 
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hiker activity appear to show bobcat avoidance of hikers. Regardless of the index used to make this 

comparison (i.e. maximum, median, mean, or third quartile number of hikers), bobcats are overall 

detected more often at cameras with lower levels of hiker activity (Table 2).  

If LΩŘ like some statistics to go along with this, I can perform a Welsch two-sample t-test which compares 

the mean hikers per camera-day of the two categories, and assesses the significance of this difference. 

In doing this, I can confirm the difference in means is not equal to 0 (t = 15.115, df = 315.27, p < 2.2e-

16). This provides support for speculation that bobcats may be displaced by hikers. However, it does not 

provide a precise threshold estimate at which this displacement occurs. Further, these methods lack 

consideration for a variety of other factors that may also influence bobcat detection probability (e.g. 

habitat, prey availability).  

Therefore, while this method may be rather simple to implement, and offer evidence for the existence 

of recreational displacement, I still likely need to perform a more thorough analysis with statistical 

models that consider alternative explanations of bobcat habitat use. These models could also potentially 

prove fruitful in providing concrete estimates of a threshold at which recreational displacement occurs.  

One such model that is straightforward to develop, and may be useful in this exploration is a logistic 

regression model.



 

IV. METHOD TWO: LOGISTIC REGRESSION 
 

Logistic regression is one of the most commonly applied statistical analyses in wildlife habitat use 

ƳƻŘŜƭƭƛƴƎ ό5ǊŜǿ Ŝǘ ŀƭΦ нлмлΤ bŀŘΩƻ ϧ YŀƶǳŎƘ 2018), and can be performed in nearly any statistical 

software. This analysis contrasts a binary variable (0, 1) against some explanatory variable(s), therefore 

estimating how the probability of the outcome (0-1) changes with the explanatory variable. In my case, 

LΩƳ interested in how the probability of detecting a bobcat in any given camera-day changes with an 

increasing number of hikers detected in that camera-day.  

For clarification, it should be noted that some CT studies consider detection probability as the 

probability that an animal will be detected, given it is in the vicinity of the camera, therefore alluding to 

the fact that some species may not be detected by a camera if they do not travel directly in front of it, 

even if they use the habitat (Fig. 6; Burton et al. 2015). Note that for my purposes, I am instead using the 

term detection probability to indicate the probability that a bobcat uses the habitat. 

Figure 6: A figure from Burton et al. (2015)Σ ǿƘƛŎƘ ƛƭƭǳǎǘǊŀǘŜǎ ǘƘŜ ǾŀǊƛƻǳǎ ŦŀŎǘƻǊǎ ǘƘŀǘ Ƴŀȅ ƛƴŦƭǳŜƴŎŜ άŘŜǘŜŎǘƛƻƴ 
ǇǊƻōŀōƛƭƛǘȅέ ŀǎ ƛǘ ƛǎ ŎƻƳƳƻƴƭȅ ǘŜǊƳŜŘ ƛƴ camera trap studies. For my purposes, I am not using this definition of 
detection probability, and am instead referring to detection probability as the probability an animal will use a 
particular habitat. 
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To begin, I can construct a simple logistic regression which contrasts whether a bobcat was detected 

during a camera-day against the number of hikers seen during that camera-day. 

 

Figure 7: Illustration of a logistic regression contrasting the probability of detecting a bobcat during a camera-day 
(y-axis) against the number of hikers detected at that camera-day (x-axis). The regression is shown as the blue line, 
which shows a decreasing probability of bobcat detection with each additional hiker detected.   
 

Here, I can see the blue line as a visual representation of the regression, where the relationship between 

the two variables shows bobcat detection probability decreases as the number of hikers increases, 

approaching zero at around 25-30 hikers per camera-day (Fig. 7). 

Table 3: Statistics associated with the logistic regression which contrasted bobcat detection 
probability per camera-day against the number of hikers detected per camera-day. 

Term Estimate SE p-value 
Intercept -2.9036 0.0943 < 2e-16 
Coefficient of Hikers -0.0716 0.0151 4.85e-10 

 

Under standard levels of statistical significance, which typically require p < 0.05, the negative 

relationship between the number of hikers and bobcat detection probability is statistically significant. 

Further, the estimates of coefficients can inform a mathematical approach to using this model. 

Accordingly, I can write this equation out for further exploration as: 

ὰέὫὭὸὴ  ςȢωπσφ πȢπχρφὼ 
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Where p represents the probability of detecting a bobcat during a camera-day, and x is the number of 

hikers seen at that camera-day. Note that if the number of hikers is equal to zero, the equation 

becomes: 

ὰέὫὭὸὴ ςȢωπσφ 

Or: 

ÌÏÇ
ὴ

ρ ὴ
ςȢωπσφ 

Then, I can solve for p: 

Ὡ
 

Ὡ Ȣ  

ὴ

ρ ὴ
πȢπυτψ 

ὴ
πȢπυτψ

ρ πȢπυτψ
 

ὴ πȢπυςπυȢςϷ 

This implies that in areas or times of zero hiker activity, there is a 5.2% chance of detecting a bobcat. 

While this percentage might seem low, bobcats are elusive, often maintain low population densities, 

and there is a vast amount of land between cameras that bobcats could be occupying. Therefore, this 

estimate may be quite reasonable.  

Following a similar procedure, I could also determine the approximate number of hikers at which the 

probability of detecting a bobcat on a given camera-day becomes zero. However, log(p/1-p) when p = 0 

is unsolvable, so I would need to instead solve for a very low probability. Say, 0.005, or 0.5%: 

ὰέὫὭὸπȢππυ ςȢωπσφ πȢπχρφὼ 

ÌÏÇ
πȢππυ

ρ πȢππυ
 ςȢωπσφ πȢπχρφὼ 

υȢςωσπ ςȢωπσφ πȢπχρφὼ 

ὼ σσȢσφ σσ ὬὭὯὩὶί 

From this, I gather if I want even a 0.5% probability of detecting bobcats on any of my cameras, the 

number of hikers seen on that camera must not exceed 33 hikers per camera-day. 

However, this model fails to account for other factors that may also be influencing the probability of 

detecting a bobcat, such as habitat quality or prey availability. To this end, I might want to construct 

another logistic regression which includes this information as additional predictor variables. Reflecting 
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on the prior regression, I modeled bobcat detection probability as a function of the number of hikers 

seen: 

ὴὦέὦὧὥὸ ὨὩὸὩὧὸὭέὲ ͯ Π ὬὭὯὩὶί 

In order to include prey availability, I would likely need more data than can be gathered with camera 

traps (e.g. live trapping of small mammals). However, there are pertinent environmental variables that 

can be collected in the field or derived using GIS. Perhaps the percent of crown closure at a particular 

camera location and the distance from this location to the urban-wildland boundary are also important 

factors to include in this model. I can add these to the model as such: 

ὴὦέὦὧὥὸ ὨὩὸὩὧὸὭέὲ ͯ Π ὬὭὯὩὶίὧὶέύὲ ὧὰέίόὶὩ ὨὭίὸὥὲὧὩ ὸέ  ὦέόὲὨὥὶώ 

Re-running the regression with these new variables, I acquire the following statistics: 

Table 4: Statistics associated with the logistic regression which contrasted bobcat detection 
probability per camera-day against the number of hikers detected per camera-day, as well 
as the percent crown closure at a particular camera and the distance from the camera to 
the urban-wildland boundary. 

Term Estimate SE p-value 
Intercept -3.6390 0.3655 < 2e-16 
Hikers -0.0677 0.0110 6.16e-10 
Crown Closure 0.0200 5.42e-3 0.0002 
Distance to Boundary -2.65e-4 3.90e-5 1.04e-11 

 

Using a significance level of p < 0.05, I can see that although the hiker variable is still significant, so are 

the additional two variables. Thus, hikers negatively impact the probability of detecting a bobcat, but 

bobcats are also more likely to be detected in areas of higher crown closure, and areas closer to the 

urban-wildland boundary. I can similarly use these numbers to form an equation: 

ὰέὫὭὸὴ  σȢφσωππȢπφχχΠ ὬὭὯὩὶίπȢπςππϷ ὧὶȢὧὰέίόὶὩπȢπππςφυτὨὭίὸȢὸέ ὦέόὲὨȢ 

CƻǊ ǘƘŜ ǎŀƪŜ ƻŦ ŜȄǇƭƻǊŀǘƛƻƴΣ ƭŜǘΩǎ ŀǎǎǳƳŜ ǘƘŜ ŎǊƻǿƴ ŎƭƻǎǳǊŜ ŀƴŘ ŘƛǎǘŀƴŎŜ ǘƻ ōƻǳƴŘŀǊȅ ǘƻ ōŜ Ŝǉǳŀƭ ǘƻ 

their average values across the cameras (mean crown closure = 62.98%, mean distance to boundary = 

3215.3m). This gives me: 

ὰέὫὭὸὴ  σȢφσωππȢπφχχΠ ὬὭὯὩὶίρȢςφρππȢψυσπ 

So, for a camera with average crown closure and average distance to the urban-wildland boundary, on a 

day where zero hikers are detected, the probability of detecting a bobcat is equal to: 

ὰέὫὭὸὴ  σȢςσρπ 

ὴ

ρ ὴ
πȢπσωυ 

ὴ πȢπσψπσȢψϷ 
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However, this 3.8% probability in the midst of no hikers is subject to change depending on the crown 

closure and distance to the urban-wildland boundary. Not to mention, the variety of other factors that 

may be influencing bobcat habitat use, which were not modeled explicitly.  

Nevertheless, the original goal of determining a threshold is still possible in this framework. As before, I 

can also solve for the approximate number of hikers at which bobcat detection probability is 

approximately zero. Again, I will assume a 0.5% probability of detection, and average values for crown 

closure and distance to the urban-wildland boundary: 

ὰέὫὭὸπȢππυ σȢφσωππȢπφχχΠ ὬὭὯὩὶίρȢςφρππȢψυσπ 

ÌÏÇ
πȢππυ

ρ πȢππυ
 σȢφσωππȢπφχχΠ ὬὭὯὩὶίρȢςφρππȢψυσπ 

υȢςωσπ σȢςσρππȢπφχχΠ ὬὭὯὩὶί 

Π ὬὭὯὩὶίσπȢτυ σπ ὬὭὯὩὶί 

This estimate of 30 hikers per day to almost entirely displace bobcats is similar to the prior estimate, but 

now I have the added flexibility of being able to include various levels of crown closure and distances 

from the urban-wildland boundary into my model to form more precise estimates of bobcat detection 

probability across the park.  

Yet, the main goal of this exploration is to establish a rigorous framework through which to determine 

precise thresholds of recreational activity at which wildlife species are displaced. Logistic regression is a 

good start, but this framework proposes there can only be linear relationships between the predictor 

variables (e.g. number of hikers) and the response (i.e. the probability of detecting a bobcat). However, 

it may be the case that the relationships between these variables are nonlinear, and therefore threshold 

estimates may not be entirely accurate. In order to determine whether nonlinear relationships exist in 

this system, I will need to adopt another tool: nonlinear regression. 



 

V. METHOD THREE: GENERALIZED ADDITIVE MODELS  
 

Generalized additive models (GAMs) are a useful tool to discern whether there are nonlinear 

relationships between an explanatory variable and the outcome, and to make strong predictions about 

the effect of this relationship (Pedersen et al. 2019). For instance, some bobcats may be able to tolerate 

hikers up to a certain level, beyond which they may become increasingly displaced by additional hiker 

activity. If this were the case, I might expect bobcat detection probability to be somewhat constant up 

to a certain quantity of hikers, and subsequently that bobcat detection probability would decrease 

beyond this level of hiker activity.  

Identifying such a nonlinear relationship would be ideal in the search for a threshold of hikers, as the 

quantity of hikers at which bobcat detection probability begins to decrease may be a reasonable 

estimate of the threshold. Hence, GAMs could be a useful tool for threshold identification.     

GAMs operate by including an additional term (or terms) into a standard regression equation for every 

predictor variable. Before explaining how this is done, LΩƭƭ first reflect on the equation for a generalized 

linear model: 

ὴὦέὦὧὥὸ ὼ  

In this, p(bobcati) represents the probability of detecting a bobcat at any instance (i). ß0 is the intercept 

of the model, ß1 is the coefficient for the first predictor variable (e.g. # hikers), and xi1 is the value of the 

first predictor variable at instance i. The generalized additive model is nearly identical to this form, but 

instead of holding a constant coefficient (ß1) for each term, there is a function (f()) which enforces a 

nonlinear άsmooth ōŀǎƛǎέ function on the explanatory variable: 

ὴὦέὦὧὥὸ Ὢὼ  

Here, f() is some smooth basis function, which allows the relationship between the predictor (xi1) and 

the response (p(i)) to be nonlinear. In truth, the equation actually looks like: 

ὴὦέὦὧὥὸ Ὢὼ Ὢὼ Ễ Ὢὼ  

Where there is the option to have k different smooth basis functions each operating on the same 

predictor variable, allowing for several different forms of nonlinearity in the regression. A pertinent 

illustration of this follows:  
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Figure 8: Three different generalized additive model (GAM) examples from an online course on GAMs taught by 
Noam Ross. These plots show the effects increasing numbers of smooth basis functions have on the overall 
regression of a GAM. The leftmost plot illustrates how 3 smooth basis functions provide a simpler nonlinear 
regression, while the center and rightmost plots illustrate how increasing smooth basis functions to 7 and 12 
respectively increases the nonlinearity of the function.    

 

As ǘƘŜ ƴǳƳōŜǊ ƻŦ ǎƳƻƻǘƘ ōŀǎƛǎ ŦǳƴŎǘƛƻƴǎ ƛƴŎǊŜŀǎŜǎΣ ǘƘŜ άǿƛƎƎƭƛƴŜǎǎέ ƻŦ ǘƘŜ regression line also increases 

(Fig. 8). This is because the regression line is the sum of many basis functions being fit together, each 

with their own statistics that determine the curvature of each function. Critics of generalized additive 

ƳƻŘŜƭƛƴƎ ǎƻƳŜǘƛƳŜǎ ƴƻǘŜ ǘƘŀǘ ǘƻƻ Ƴŀƴȅ ōŀǎƛǎ ŦǳƴŎǘƛƻƴǎ Ŏŀƴ ƭŜŀŘ ǘƻ άƻǾŜǊ-ŦƛǘǘƛƴƎέ ƻŦ ǘƘŜ ŘŀǘŀΣ ōǳǘ Ƴƻǎǘ 

statistical computing softwares (e.g. the mgcv package in R) have built-in functions which will 

automatically derive an appropriate number of functions for each predictor variable by penalizing each 

additional function, therefore minimizing over-fitting. For the sake of brevity in this exploration, I omit 

discussing how this penalizing is done. However, information regarding the basics of constructing GAMs 

using the statistical software R, is provided at the following course: 

https://noamross.github.io/gams-in-r-course/ 

Moving on to fit  the bobcat data from Golden Ears into a GAM framework, I will use the same function I 

used in building my logistic regression: 

ὴὦέὦὧὥὸ ὨὩὸὩὧὸὭέὲ ͯ Π ὬὭὯὩὶίὧὶέύὲ ὧὰέίόὶὩ ὨὭίὸὥὲὧὩ ὸέ  ὦέόὲὨὥὶώ 

Adapting this to the GAM syntax, I get: 

ὴὦέὦὧὥὸ ὨὩὸὩὧὸὭέὲ ͯ ὪΠ ὬὭὯὩὶίὪὧὶέύὲ ὧὰέίόὶὩ ὪὨὭίὸὥὲὧὩ ὸέ  ὦέόὲὨὥὶώ 

Where each predictor variable has its own set of basis smoothing functions (f()), and the number of such 

functions is automatically determined by the statistical software IΩm using (in this case, the package 

mgcv in the statistical software R). The results of fitting this model are: 

 

 

https://noamross.github.io/gams-in-r-course/chapter1
https://www.rdocumentation.org/packages/mgcv/versions/1.8-36/topics/gam
https://noamross.github.io/gams-in-r-course/
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Table 5: Statistics associated with the generalized additive model (GAM) which contrasted bobcat 
detection probability per camera-day against the number of hikers detected per camera-day, as well 
as the percent crown closure at a particular camera and the distance from the camera to the urban-
wildland boundary. Note that the model splits terms into parametric coefficients (for terms assumed 
to have linear relationships with the response) and smooth terms (for terms assumed to have 
nonlinear relationships with the response). 

Term Type Term Estimate SE p-value 
Parametric Coefficients Intercept -4.328 0.207 <2e-16 

  EDF Ref.df p-value 

Smooth Terms Hikers 2.947 3.536 8.01e-11 
 Crown Closure 1.924 1.994 1.28e-05 
 Distance to 

Boundary 
6.914 7.750 6.53e-12 

 

The first thing to note here is that the terms are split into two different types: parametric coefficients 

and smooth terms. Parametric coefficients are provided for terms which do not have smooth functions, 

while smooth terms are provided for those that do. I might know beforehand that some terms indeed 

exhibit linear relationships with the response, and should therefore not be modeled in a nonlinear 

framework. In this case, I could model these terms without smoothing functions, and the results would 

instead ōŜ ǊŜǇƻǊǘŜŘ ƛƴ ǘƘŜ άǇŀǊŀƳŜǘǊƛŎ ŎƻŜŦŦƛŎƛŜƴǘǎέ ǎŜŎǘƛƻƴ ƻŦ ǘƘŜ ǘŀōƭŜΦ  

The flexibility to dictate which terms are linear and which terms are nonlinear is part of what makes 

GAMs so appealing. Further, the reported statistics can help determine whether a variable should be 

ƳƻŘŜƭƭŜŘ ŀǎ ŀ ƴƻƴƭƛƴŜŀǊ ǾŀǊƛŀōƭŜΦ ¢ƘŜ ά95Cέ ŎƻƭǳƳƴ ƻŦ ǘƘŜ ǎƳƻƻǘƘ ǘŜǊƳǎ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŎƻƳǇƭŜȄƛǘȅ ƻŦ 

the smoothing function, where an EDF of 1 is a flat, linear function, and each increase of +1 EDF pertains 

to an additional smoothing function being modeled. So, an EDF = 1 would imply that the term should be 

modelled parametrically. In this example, I can see that all three of my variables are indeed better off 

modelled as nonlinear terms, because each EDF is > 1 (Table 5). 

Similar to logistic regression, GAMs also provide p-values for each term that can help determine 

whether the relationship between the explanatory variables IΩǾŜ ƛƴŎƭǳŘŜŘ ŀƴŘ ǘƘŜ ǊŜǎǇƻƴǎŜ όōƻōŎŀǘ 

detection probability) are significant. At the standard significance level of p < 0.05, all three of my 

variables appear to be significant (Table 5). So, I can move into interpreting the model. 

A closer look at the partial dependency plots (PDPs) of each of these terms reveals the approximate 

shape of these nonlinear trends: 
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PDPs illustrate the nonlinear relationships between my explanatory variables and my response, given 

the other explanatory variables are all held at their mean values. In this, I can see that when the other 

variables are held constant, bobcat detection probability is greatest in the absence of hikers (when 

hikers = 0), at intermediate distances from the boundary (approximately 2500m), and intermediate 

crown closure (approximately 62%) (Fig. 9). However, to determine the threshold at which the number 

of hikers begins to displace bobcats, I should take a closer look at my hiker plot. 

Figure 9: These plots show the nonlinear relationships 
between each of these variables (top left: number of 
hikers per camera-day, top right: crown closure (%), 
bottom left: distance to boundary (m)) and the 
response (bobcat detection probability per camera-
day), given the other variables are all held at their 
means. The regression is shown as the solid black line, 
while 95% confidence intervals of this regression are 
represented by the blue shading around each 
regression line.  
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Figure 10: The nonlinear relationship between the number of hikers per camera-day (x-axis), and bobcat detection 
probability per camera-day (y-axis), given the other variables are all held at their means. The regression line is 
illustrated with the solid black line, while 95% confidence intervals are represented by the blue shading around the 
regression line.  
 

Ideally, I would see a relatively consistent bobcat detection probability, up to some point when it begins 

to decrease. However, this sort of nonlinear relationship does not exist in this model. Instead, I see an 

immediate decrease in detection probability up to some point where it levels out (e.g. where additional 

hikers do not impact the already very low detection probability) (Fig. 10). Therefore, similar to the 

logistic regression framework before, to establish a threshold of disturbance, I might instead consider 

the number of hikers which results in bobcat detection probability falling below some limit. 

Mathematic estimation is difficult in a GAM framework given numerous smoothing functions can make 

the regression equation quite complex. Therefore, a visual assessment may be simpler. The intercept of 

the plot above shows that bobcat detection probability with zero hikers is somewhere around 3.7% 

(similar to the logistic regression estimate of around 3.8%) (Fig. 10). Yet, the point at which this 

probability drops to 0.5% is around 22 hikers per camera-day, in contrast to the ~30 hikers per camera-

day the logistic model predicted. Additionally, it appears that the curve flattens quite a bit around this 

point, indicating that bobcat detection probability may remain around 0.5% for quantities of hikers 

ranging from around 22-60. After this, the detection probability slowly tapers off to zero, though the 

confidence intervals widen due to a lack of data (i.e. there are not enough camera-days with quantities 

of hikers > 80 to make inferences about the relationship at this point). Therefore, I might propose a 

threshold of around 22 hikers per camera-day to effectively displace bobcats. 
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One final step I need to take before I can be happy with this model, however, is to determine whether 

the model fit is acceptable. The explanatory variables included are all significant at the p < 0.05 level, but 

this tells me very little about how well the model represents variation in the data. In order to check this, 

I can check the model performance with an outer newton optimizer: 

Table 5: Statistics associated with an outer-newton optimizer performed to assess the fit of the 
generalized additive model (GAM) which contrasted bobcat detection probability per camera-
day against the number of hikers detected per camera-day, the percent crown closure at a 
particular camera, and the distance from the camera to the urban-wildland boundary. The 
optimizer indicated full model convergence after 8 iterations. 

Term ƪΩ EDF k-index p-value 
Hikers 8.00 2.95 0.54 < 2e-16 
Crown Closure 2.00 1.92 0.91 0.2 
Distance to Boundary 9.00 6.91 0.84 <2e-16 

Convergence Full model convergence after 8 iterations 

 

The first thing to check here is model convergence. Statistical software will typically provide an 

assessment of model convergence after performing an outer newton optimizer, which details whether 

the model has converged (i.e. identified the single best solution given the data) or not (i.e. identified 

multiple equally plausible solutions). Full convergence is required to make any sort of substantiated 

claims regarding the model. For this model, full convergence was achieved after eight iterations. 

The next thing to look at are the p-values and k-indices. However, contrary to typical model testing, I 

want p-values that are greater than 0.05. Likewise, I want k-ƛƴŘƛŎŜǎ ǘƘŀǘ ŀǊŜ ƎǊŜŀǘŜǊ ǘƘŀƴ мΣ ŀƴŘ ƪΩ ŀƴŘ 

EDF values that are not similar to one another. In this particular model, these values are less than ideal, 

as the p-values for the terms representing hikers and the distance to urban-wildland boundary are both 

very low. Likewise, k-indices for all terms are less than one. {ƛƳƛƭŀǊƛǘƛŜǎ ōŜǘǿŜŜƴ ƪΩ ŀƴŘ 95C ŀǊŜ ƴƻǘ ŀ 

concern in this model, but given the other issues, I might want to try to improve the model. 

I can attempt to overcome the issue of model fit by increasing the number of smooth basis functions 

enforced on the model terms. It was mentioned previously that most statistical software determine the 

number of smooth basis functions automatically. However, there is also an option to manually set these 

numbers, but the user should be wary of doing this to avoid over-fitting the model to the data. 

Unfortunately, in the case of this model, no matter how many smooth basis functions are enforced on 

the terms, the model still fails the optimizer test, indicating that adequate model performance may not 

be achievable with the model written the way it is.  

This may be due to sparse detection data, as there are only 198 camera-days with bobcat detections 

being contrasted against 6,495 camera-days that did not detect bobcats. Such sparse data is 

commonplace in wildlife research, especially when attempting to model elusive species or carnivores. 

So, it makes sense that for bobcats, an elusive-carnivorous species, the model is not performing well. I 

may therefore need to adopt alternative methods that are more adept at dealing with sparse data. 



 

VI. METHOD FOUR: RANDOM FOREST ALGORITHMS 
 

Random forest algorithms average the predictions made by some number (often hundreds or 

thousands) of decision trees (Breiman 2001). Therefore, in order to understand how a random forest 

algorithm operates, a baseline understanding of decision trees is required. Decision trees involve a 

machine learning algorithm that can be trained to make precise predictions about the outcomes of a 

particular test (Safavian and Landgrebe 1991). In this case, a decision tree could make predictions about 

the probability of detecting a bobcat, or more specifically, a binary classification of whether a bobcat 

would be detected (1) or not (0). Such a binary outcome would be modeled as a άclassification treeέ, 

though there are other decision trees (e.g. regression trees) which can predict continuous outcomes. 

The goal of a classification tree is to observe the data at hand and make decisions about which predictor 

variables are most important in classifying the outcome. In doing this, classification trees quantify 

precise values at which predictor variables lead to varying classification outcomes. Thus, in the context 

of recreation thresholds, a decision tree could determine which predictor variables are most important 

in predicting the probability of detecting a bobcat, while providing precise estimates about levels at 

which this prediction changes. Note that like GAMs, decision trees allow for nonlinear trends, meaning 

that predictor variables can be considered multiple times. An example of a decision tree follows: 

 

 

Figure 11: An example decision (regression) tree from Muhly et al. (2011) that considers which variables (prey 
count, human count, or cattle count) influence predator count most, and the values at which each of these lead to 
different predictions of predator count.  


















